3.136 \(\int \frac{\sqrt{x}}{\sqrt{x^3 (a+b x^2+c x^4)}} \, dx\)

Optimal. Leaf size=53 \[ -\frac{\tanh ^{-1}\left (\frac{x^{3/2} \left (2 a+b x^2\right )}{2 \sqrt{a} \sqrt{a x^3+b x^5+c x^7}}\right )}{2 \sqrt{a}} \]

[Out]

-ArcTanh[(x^(3/2)*(2*a + b*x^2))/(2*Sqrt[a]*Sqrt[a*x^3 + b*x^5 + c*x^7])]/(2*Sqrt[a])

________________________________________________________________________________________

Rubi [A]  time = 0.0772904, antiderivative size = 53, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {1997, 1913, 206} \[ -\frac{\tanh ^{-1}\left (\frac{x^{3/2} \left (2 a+b x^2\right )}{2 \sqrt{a} \sqrt{a x^3+b x^5+c x^7}}\right )}{2 \sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]/Sqrt[x^3*(a + b*x^2 + c*x^4)],x]

[Out]

-ArcTanh[(x^(3/2)*(2*a + b*x^2))/(2*Sqrt[a]*Sqrt[a*x^3 + b*x^5 + c*x^7])]/(2*Sqrt[a])

Rule 1997

Int[(u_)^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Int[(d*x)^m*ExpandToSum[u, x]^p, x] /; FreeQ[{d, m, p}, x] &&
GeneralizedTrinomialQ[u, x] &&  !GeneralizedTrinomialMatchQ[u, x]

Rule 1913

Int[(x_)^(m_.)/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Dist[-2/(n - q), Sub
st[Int[1/(4*a - x^2), x], x, (x^(m + 1)*(2*a + b*x^(n - q)))/Sqrt[a*x^q + b*x^n + c*x^r]], x] /; FreeQ[{a, b,
c, m, n, q, r}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && NeQ[b^2 - 4*a*c, 0] && EqQ[m, q/2 - 1]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{x}}{\sqrt{x^3 \left (a+b x^2+c x^4\right )}} \, dx &=\int \frac{\sqrt{x}}{\sqrt{a x^3+b x^5+c x^7}} \, dx\\ &=-\operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{x^{3/2} \left (2 a+b x^2\right )}{\sqrt{a x^3+b x^5+c x^7}}\right )\\ &=-\frac{\tanh ^{-1}\left (\frac{x^{3/2} \left (2 a+b x^2\right )}{2 \sqrt{a} \sqrt{a x^3+b x^5+c x^7}}\right )}{2 \sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.0194707, size = 85, normalized size = 1.6 \[ -\frac{x^{3/2} \sqrt{a+b x^2+c x^4} \tanh ^{-1}\left (\frac{2 a+b x^2}{2 \sqrt{a} \sqrt{a+b x^2+c x^4}}\right )}{2 \sqrt{a} \sqrt{x^3 \left (a+b x^2+c x^4\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]/Sqrt[x^3*(a + b*x^2 + c*x^4)],x]

[Out]

-(x^(3/2)*Sqrt[a + b*x^2 + c*x^4]*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*Sqrt[a]*Sqrt[
x^3*(a + b*x^2 + c*x^4)])

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 74, normalized size = 1.4 \begin{align*} -{\frac{1}{2}{x}^{{\frac{3}{2}}}\sqrt{c{x}^{4}+b{x}^{2}+a}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+b{x}^{2}+2\,\sqrt{a}\sqrt{c{x}^{4}+b{x}^{2}+a} \right ) } \right ){\frac{1}{\sqrt{{x}^{3} \left ( c{x}^{4}+b{x}^{2}+a \right ) }}}{\frac{1}{\sqrt{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)/(x^3*(c*x^4+b*x^2+a))^(1/2),x)

[Out]

-1/2/(x^3*(c*x^4+b*x^2+a))^(1/2)*x^(3/2)*(c*x^4+b*x^2+a)^(1/2)/a^(1/2)*ln((2*a+b*x^2+2*a^(1/2)*(c*x^4+b*x^2+a)
^(1/2))/x^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x}}{\sqrt{{\left (c x^{4} + b x^{2} + a\right )} x^{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(x^3*(c*x^4+b*x^2+a))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x)/sqrt((c*x^4 + b*x^2 + a)*x^3), x)

________________________________________________________________________________________

Fricas [A]  time = 1.36241, size = 338, normalized size = 6.38 \begin{align*} \left [\frac{\log \left (-\frac{{\left (b^{2} + 4 \, a c\right )} x^{6} + 8 \, a b x^{4} + 8 \, a^{2} x^{2} - 4 \, \sqrt{c x^{7} + b x^{5} + a x^{3}}{\left (b x^{2} + 2 \, a\right )} \sqrt{a} \sqrt{x}}{x^{6}}\right )}{4 \, \sqrt{a}}, \frac{\sqrt{-a} \arctan \left (\frac{\sqrt{c x^{7} + b x^{5} + a x^{3}}{\left (b x^{2} + 2 \, a\right )} \sqrt{-a} \sqrt{x}}{2 \,{\left (a c x^{6} + a b x^{4} + a^{2} x^{2}\right )}}\right )}{2 \, a}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(x^3*(c*x^4+b*x^2+a))^(1/2),x, algorithm="fricas")

[Out]

[1/4*log(-((b^2 + 4*a*c)*x^6 + 8*a*b*x^4 + 8*a^2*x^2 - 4*sqrt(c*x^7 + b*x^5 + a*x^3)*(b*x^2 + 2*a)*sqrt(a)*sqr
t(x))/x^6)/sqrt(a), 1/2*sqrt(-a)*arctan(1/2*sqrt(c*x^7 + b*x^5 + a*x^3)*(b*x^2 + 2*a)*sqrt(-a)*sqrt(x)/(a*c*x^
6 + a*b*x^4 + a^2*x^2))/a]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)/(x**3*(c*x**4+b*x**2+a))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{x}}{\sqrt{{\left (c x^{4} + b x^{2} + a\right )} x^{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)/(x^3*(c*x^4+b*x^2+a))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x)/sqrt((c*x^4 + b*x^2 + a)*x^3), x)